obの関手性

ごさいようじょです。これはMathjaxのテストです。

$\mathcal{C}$を局所小圏、$\textbf{Cat}$を局所小圏とその間の関手の圏とします。
このとき圏論的な対象への対応$\text{ob}$は関手 $\text{ob}: \textbf{Cat} \rightarrow \textbf{Set}$として振る舞います。

具体的には$\text{ob}$を
\begin{align}
&(対象)~\forall \mathcal{A} \in \textbf{Cat}, \\
&~~\text{ob}(\cdot)(\mathcal{A}) = \text{ob}(\mathcal{A})\\
&(射) ~ \mathcal{A} \xrightarrow{\forall F} \mathcal{B}, \forall A \in\mathcal{A},\\
&~~\text{ob}(F)(A) = F(A)
\end{align}
と定義します。

これは$\mathcal{A} \in \textbf{Cat}$の対象を、各々の小圏の対象に関する関手(の二つ組の片割れ)を保存し、その射$\text{ar}(\mathcal{A})=\{A \xrightarrow{f} A' ,~\forall A, A' \in \mathcal{A}\}$の対応を忘却するような感じで$\textbf{Set}$に写す対応になっています。
(忘却関手と言えそうな感じがする)

proof

(恒等射の保存)

$\forall \mathcal{A} \in \textbf{Cat}$に対して恒等関手を$1_\mathcal{A}$とします。
このとき$A \in \text{ob}(\mathcal{A})$に対して
\begin{align}
\text{ob}(1_\mathcal{A})(A) &= 1_\mathcal{A}(A) &\qquad (\text{ob}の定義) \\
&= A&\\
&= 1_{\text{ob}(\mathcal{A})}(A)
\end{align}

より $\text{ob}(1_\mathcal{A}) = 1_{\text{ob}(\mathcal{A})}$ がいえます。

(合成射)

$ \mathcal{A} \xrightarrow{\forall F} \mathcal{B} \xrightarrow{\forall G} \mathcal{C}$とします。
このとき合成関手$G \circ F, ~\forall A \in \mathcal{A}$にたいして

\begin{align}
\text{ob} (G \circ F)(A) &= (G \circ F) (A) &\qquad (\text{ob}の定義)\\
&=(\text{ob}(G) \circ \text{ob}(F))(A) &\qquad(対象に対して\text{ob}(F) = Fなので)
\end{align}

よって$\text{ob} (G \circ F) = \text{ob}(G) \circ \text{ob}(F)$.

なのでobは局所小圏に対して関手$\mathbf{Cat} \rightarrow \mathbf{Set}$を定めることがわかりました*1

自然に出てきた対象への対応$\text{ob}$が実は関手的であったというのはおもしろいですね。
とても童心をくすぐるものだと思います。

*1:これ、局所小圏じゃなくて大きな圏の場合には関手にはならないんですかね。 $\text{ob}: \textbf{CAT} \rightarrow \textbf{Cls}$? $\textbf{Cls}$なんてあるのか…?